A Constrained Multi-view Clustering Approach to Influence Role Detection
نویسندگان
چکیده
Twitter has provided people with an effective way to communicate and interact with each other. It is an undisputable fact that people's influence plays an important role in disseminating information over the Twitter social network. Although a number of research work on finding influential users have been reported in the literature, they never really seek to distinguish and analyze different influence roles, which are of great value for various marketing purposes. In this paper, we move a step forward to further detect five recognized influence roles of Twitter users with regard to a particular topic. By exploring three views of features related to topic, sentiment and popularity respectively, we propose a novel constrained multi-view influence role clustering approach to group potential influential Twitter users into five categories. Experimental results demonstrate the effectiveness of the proposed approach.
منابع مشابه
Detecting communities of workforces for the multi-skill resource-constrained project scheduling problem: A dandelion solution approach
This paper proposes a new mixed-integer model for the multi-skill resource-constrained project scheduling problem (MSRCPSP). The interactions between workers are represented as undirected networks. Therefore, for each required skill, an undirected network is formed which shows the relations of human resources. In this paper, community detection in networks is used to find the most compatible wo...
متن کاملMulti-view low-rank sparse subspace clustering
Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a joint subspace representation by constructing affinity matrix shared among all views. Relyi...
متن کاملAn Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کاملHarmonically Informed Multi-Pitch Tracking
This paper presents a novel system for multi-pitch tracking, i.e. estimate the pitch trajectory of each monophonic source in a mixture of harmonic sounds. The system consists of two stages: multi-pitch estimation and pitch trajectory formation. In the first stage, we propose a new approach based on modeling spectral peaks and non-peak regions to estimate pitches and polyphony in each single fra...
متن کاملMulti-scale Community Detection in Temporal Networks Using Spectral Graph Wavelets
Abstract Spectral graph wavelets introduce a notion of scale in networks, and are thus used to obtain a local view of the network from each node. By carefully constructing a wavelet filter function for these wavelets, a multi-scale community detection method for monoplex networks has already been developed. This construction takes advantage of the partitioning properties of the network Laplacia...
متن کامل